EZTREE Lite 1.0 BTree database engine

Copyright © 2000, Christopher R. Boss, Alls Rights Reserved

FREEWARE

	This version of the EZTree BTree database engine is Freeware ! You may use it Royalty Free with any Commercial (or personal) PowerBasic DLL or PowerBasic CC compiler application you write.

	While the software is offered as Freeware, this does not mean it is in the Public Domain. The author retains all rights to this software.

	What this basically means is, you can use it with your own applications and distribute it Royalty free with your application. You may also make it available to others for their use by posting it on a Web site for downloading.

	If you post the software for free distribution on a web site, it must be accompanied by this documentation and in the original form created by the author (distributed as a ZIP file).

The Commercial Version

	There is another version of this database engine called EZTree 1.0 (not Lite). The Commercial version has three more functions included:

EZ_SCANRECORD	-	This function allows you to Scan the Btree database as if it were a "Flat" file. You can search for multiple matching records based on any piece of text within the record.

EZ_REBALANCEBTREE	-	This function will rebuild all the pointers in the database and it will rebalance the Btree. Btrees tend to degrade when the data inputed is already pre-sort (alphabetic order). This function will optimize the BTree for faster searches.

EZ_IMPORTBTREE	-	This function allows you to Import a database which is in an Ascii text file (comma delineated). This is useful for importing data which has been exported from another database program.

	The Commercial version is available from Rayfield Communciations Software Tools web site: http://ezgui.com

	EZTree is part of the EZGUI family of software products.

The Software

EZTree uses a very simple set of functions to impliment a BTree database. The most important thing to remember about EZTREE is that the Record length should always remain the same when working with each data file. The record length is determined by the len of the string you pass to the EZTREE functions for the record data (variable DB$). You do your own formating of the data for each record. The only thing that EZTREE expects for each record is that the Index key field be the first field in the string.

Lets start with the first function EZ_ADDRECORD :

X&=EZ_ADDRECORD (F$, DB$, KL&)

F$	=	Filename (and path)

DB$	=	Record data

KL&	=	Length of Index KEY Field (first field)

This function ADDS a new record to the database !

The variable DB$ is used to pass a new record to your database. Here is an example:

MyKey$="Doe, John "		' key field is 20 characters

OtherData$="100 Main St. " +space$(50)	' other data - 70 bytes

DB$=MyKey$+OtherData$

F$="MyData.dat"

KL&=len(MyKey$)

if EZ_ADDRECORD (F$, DB$, KL&) then

	' Save was successful !

end if

In the example above, the key field was 20 bytes and the other data was 70 bytes, so the total record length is 90 bytes. Every other reference to this particular database must use 20 bytes for the keyfield and 70 bytes for the rest of the record. The string variable DB$ must always pass 90 bytes total, for this particular example.

Internally, EZTREE checks the size of the string DB$ and uses this as the record length. It will add 8 more bytes in the actual database to each record which are two numeric pointers (Long Integers).

It is up to you the programmer, to make sure that you always pass your record data with the same length for each record and the same length for the Index Key.

The next function is EZ_FINDRECORD :

X&=EZ_FINDRECORD (F$, DB$, DBRET$, KL&)

F$	=	Filename (and path)

DB$	=	Record data to search for (only key field is significant)

DBRET$=	Variable to return data

KL&	=	Index KEY length

This function FINDS and existing Record to database !

Here is a simple example, based on the previously defined database:

MyKey$="Doe, John "		' key field is 20 characters

OtherData$=string$(70, " ")		' pad with spaces - 70 characters

DB$=MyKey$+OtherData$

F$="MyData.dat"

KL&=len(MyKey$)

if EZ_FINDRECORD (F$, DB$, DBRET$, KL&) then

	' Record found and returned in DBRET$

end if

The next function is EZ_SAVERECORD :

X&=EZ_SAVERECORD (F$, DB$, KL&)

F$	=	Filename (and path)

DB$	=	Record data

KL&	=	Length of Index KEY Field (first field)

This function SAVES (or Updates) an existing record in the database !

If the Index Key does not exist (record does not exist), it will create it.

The variable DB$ is used to pass a record to your database. Here is an example:

MyKey$="Doe, John "		' key field is 20 characters

OtherData$="205 Main St. " +space$(50)	' other data - 70 bytes

DB$=MyKey$+OtherData$

F$="MyData.dat"

KL&=len(MyKey$)

if EZ_SAVERECORD (F$, DB$, KL&) then

	' Save was successful !

end if

With just three functions you can impliment a BTree database !

EZTREE requires Unique Index keys and cannot have multiple Keys which are the same. If you need to have multiple keys that are the same, you can actually create such a database using EZTREE, by adding some extra data to your key field. This is quite simple.

Normally your key data field would have just the Key value in it (like a name). To have multiple keys which are the same, then simply increment a counter value and use it as a prefix to each key.

A normal key :	K$="Doe, John "

	

Multiple keys:	K$="001Doe, John "

			K$="002Doe, John "

			K$="003Doe, John "

			K$="004Doe, John "

To search for multiple keys, you would start with the value of 001 and search for the key (with the 001 prefix). If you get a match, then you woud search for 002 and so on. This example, would allow for 999 keys that are the same.

Another concern may be the need for Deleteing records. This is easily to impliment your self, by simply adding a single character at the end of the record for a Statuc Flag. If the letter was A it would be active and if the letter was D it would be deleted. This is a good way to accomplish this since, it allows reactivating deleted records.

To purge a file of deleted records, would require reading all the records in sequence and then saving only the active ones to a new file and then rename the files.

The nice thing about EZTREE is that technically, your database is just a flat file. Each record is the same size (what you pass with DB$) plus 8 extra bytes for two Long Integer Pointers. You can easily write your own custom routines for accessing the database, since it is a flatfile.

